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ABSTRACT 
 

Despite recent efforts to collect high-resolution multibeam bathymetry data across the Pacific 
Islands Region, significant gaps exist in the 0–30 m depth range. Achieving bathymetric 
coverage in these areas is critical for assessing the health of coral reef ecosystems that reside 
there. Here we use WorldView-2 multispectral satellite imagery and two depth derivation 
methods (Lyzenga, 2006; Stumpf et al., 2003) that relate spectral radiance values to ground truth 
depth information to derive depths for shallow-water regions in the main Hawaiian Islands. Our 
results show increased accuracy using the Lyzenga (2006) multiple linear regression method 
when compared to the Stumpf et al. (2003) ratio method. Furthermore, we achieved improved 
results by eliminating the linearization process from the Lyzenga (2006) method. This 
improvement may be related to the lack of large seagrass aggregations within the main Hawaiian 
Islands because the presence of seagrass has been shown to affect the linear relationship between 
ground truth depth and spectral radiance values (Doxani et al., 2012). The accuracy of our 
derived depth product is directly related to the quality of the multispectral satellite images, the 
availability of ground truth data, and water depth with accuracy decreasing substantially in water 
depths > 20 m. Our results show that in the absence of shallow (0–20 m) high-resolution 
bathymetric data, satellite-derived depths are an important resource for assessing, monitoring, 
and managing shallow coral reef ecosystems.  
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INTRODUCTION 
 
 
As part of the National Oceanic and Atmospheric Administration (NOAA) Coral Reef 
Conservation Program, primary objectives of the NOAA Pacific Islands Fisheries Science 
Center’s Coral Reef Ecosystem Division (CRED) are to monitor, map, and understand coral reef 
ecosystems to inform resource management and support conservation activities and decision 
making across the Pacific Islands Region (Fig. 1). CRED’s benthic habitat mapping produces 
maps of habitat characteristics, including bathymetry and coral cover. These products provide a 
scientific basis for spatial planning and management and are essential tools for gaining a better 
understanding of marine ecosystems.  
 

 
 
Figure 1.--The Pacific Islands Region, which consists of the Hawaiian and Mariana 
Archipelagos, American Samoa and the Pacific Remote Island Areas, including seven islands 
scattered across the tropical Pacific. 
 
High-resolution bathymetric data are essential for characterizing benthic habitats. These data can 
be acquired using shipboard sonars and satellite or aerial remote sensing techniques. Extensive 
multibeam sonar data collection has occurred in the U.S. Pacific Islands Region. In the depth 
range from 0 to 150 m, 48% of the seafloor within the region and 84% of the area outside of the 
Northwestern Hawaiian Islands has been mapped; however, significant gaps still exist around 
U.S.-affiliated Pacific islands between 0 and 30 m depths (Miller et al., 2011). This is primarily 
because multibeam surveys conducted using small boats are often unable to collect data in depths 
shallower than ~ 10–15 m as a result of navigation hazards associated with shallow reefs; 
therefore, most islands in the region are left with a ring-shaped gap in bathymetric coverage 
between the shoreline and approximately ~ 15–30 m. Having bathymetric data for these shallow 
depths is critical for managers in the Pacific Islands Region where many coral reefs are present, 
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and exchange of nutrients, sediments, and pollutants between the land and ocean must pass 
through this zone. It is also an area where many anthropogenic impacts can occur, such as 
sedimentation, nutrient enrichment, and ship groundings. 
 
By measuring the difference in travel times of two different wavelengths of light (near-infrared 
[NIR] and green), airborne LiDAR (Light Detection and Ranging) is a technique that can also be 
used to collect high-resolution depth information in shallow marine environments (Irish et al., 
2000). Bathymetric LiDAR data have been collected around many shorelines in the main 
Hawaiian Islands (MHI) and a few other more populated islands in the region. These data fill the 
nearshore gap left by multibeam surveys. Unfortunately, the vast majority of islands and 
shorelines in the Pacific Islands Region lack such coverage. The benefit of LiDAR is that high- 
resolution data can be acquired over large areas in a very short time, but there are also difficulties 
associated with this method. At depths shallower than ~ 1 m it becomes difficult to distinguish 
between the differences in travel times associated with the water surface and bottom returns, and 
the calculated depths become increasingly ambiguous (Guenther et al., 2000). More importantly, 
white water and turbidity from breaking waves often prevent the collection of accurate depth 
data from bathymetric LiDAR in these areas. Therefore, gaps in bathymetric LiDAR often exist.1 
The aforementioned limitations aside, LiDAR still offers the most accurate method to acquire 
bathymetry over large areas and in water too shallow for multibeam surveys. However, due to 
the mobilization of equipment and aircraft to conduct surveys at scattered and often remote 
locations in the Pacific Islands Region, the acquisition of bathymetric LiDAR data is 
prohibitively expensive for most agencies and stakeholders (Miller et al., 2011).  
 
Since the late 1970s it has been recognized that, as an alternative to the discussed active remote 
sensing tools (sonar and LiDAR), shallow-water depths can also be estimated using multi-band 
satellite imagery and passive remote sensing techniques (Lyzenga, 1981; Clark et al., 1987; 
Philpot, 1989). These methods are effective for mapping shallow-water ecosystems including 
coral reefs, but they do not provide the same continuity and accuracy as active remote sensing 
tools (Costa et al., 2009). In recent years, the initially proposed methods have been modified and 
new methods have been developed (e.g., Maritorena et al., 1994; Stumpf et al., 2003; Mishra et 
al., 2005; Hogrefe et al., 2008; Kanno, 2012). 
 
Hogrefe et al. (2008) derived depths for 12 islands in the Pacific Islands Region using 4-m 
resolution multispectral satellite imagery (IKONOS); however, the first IKONOS images were 
acquired in 1999 and satellite technologies have dramatically improved since. In 2009 
DigitalGlobe launched the WorldView-2 (WV-2) satellite, which collects 1.84-m resolution 
images and includes four new color bands (coastal, yellow, red edge, and NIR2) along with the 
four common bands (Fig. 2). Further, the greater clear-water depth penetration of the newly 
introduced coastal band (400–450 nm) supports bathymetric studies (DigitalGlobe, 2009). Here 
we apply existing methods and develop new techniques as needed to derive high-quality 
shallow-water bathymetry from WV-2 satellite imagery. This work aids in overcoming the 
challenges associated with estimating depths for waters shallower than ~ 20 m for the remote, 
scattered, and heterogeneous study areas of the U.S.-affiliated Pacific islands.  

                                                           
1 http://www.nps.edu/academics/centers/remotesensing/abstracts.html 

http://www.nps.edu/academics/centers/remotesensing/abstracts.html
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Figure 2.--The EM spectrum range of the eight available spectral bands of the WV-2 satellite 
image.2  

 
 

DATA AND METHODS 
 
 
Study area – The goal of this study is to investigate techniques for deriving shallow-water 
bathymetric data from WV-2 satellite imagery. In the future we intend to apply these methods to 
our broad study area including all the U.S.-affiliated islands, atolls, reefs, and banks within the 
Pacific Islands Region that lack bathymetric LiDAR data (see Appendix). For method 
development and testing we focused on two study areas in the MHI (Fig. 3). Kapoho is the 
easternmost point on the Island of Hawai‘i, the largest island in the Hawaiian Archipelago. The 
initial study area lies north of Kapoho at 19°33'35ʺ N and 154°52'12ʺ W and occupies an area of 
~ 11.9 km2. Ni‘ihau is the oldest of the MHI and lies at 21°55' N and 160°10' W. It is the second 
smallest island in the chain (182 km2) and was inhabited in 2010 by 170 people (State of 
Hawai‘i, 2011).  
 

 
 
Figure 3.--Initial study areas including Ni‘ihau Island and a small area north of Kapoho on the 
Island of Hawai‘i. 
                                                           
2 Figure modified after http://worldview2.digitalglobe.com/about/. 
 

http://worldview2.digitalglobe.com/about/
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Background – Depth derivation using passive remote-sensing methods is based on characteristics 
of the electromagnetic (EM) spectrum. Visible light, with wavelengths ranging from 380 to 750 
nm, is part of the EM spectrum and is transmitted with little attenuation through the atmosphere; 
however, visible light is attenuated in water with increasing depth. The amount of attenuation is 
related to the wavelengths of visible light; shorter wavelengths (i.e., coastal and blue) are less 
attenuated in water than longer wavelengths (i.e., green, yellow, and red). This variable 
attenuation of the different wavelengths of visible light enables us to correlate seafloor depth and 
the radiance values of multispectral satellite images.  
 
We previously noted that several early studies developed methods for deriving depths from 
satellite imagery using properties of the EM spectrum. In this work, we will focus on those of 
Lyzenga (1978; 1979; 1981; 1985; 2006) and Stumpf et al. (2003), which are the most successful 
and commonly used methods. Lyzenga (1978; 1981) assumed that a linear relationship exists 
between depth and the spectral radiance values of a visible band reflected by the seafloor. The 
Lyzenga method involves extracting spectral radiance values from satellite images for positions 
with known depths (ground truth points) and using linear regressions to derive a relationship 
between the radiance and ground truth information. The mathematical relationship is then used to 
calculate depths for coastal waters across the entire satellite image.  
 
Many studies have successfully derived depths using Lyzenga’s method (Hochberg et al., 2007; 
Hogrefe et al., 2008; Liu et al., 2010; Deidda and Sanna, 2012; Kanno and Tanaka, 2012). This 
method is popular and has been widely used because it assumes that depth is independent of 
difficult-to-estimate optical properties, such as bottom type, atmospheric conditions, water 
quality, and the positions of the sun and satellite. Additionally, Philpot (1989) indicated that 
including these properties increases the complexity of the model and reduces the reliability of the 
results; therefore simpler, reproducible methods are preferred.  
 
Clark et al. (1987) and Lyzenga et al. (2006) proposed a multi-band method which helps reduce 
errors introduced by variations in seafloor bottom type. A multiple linear regression is applied 
using spectral values from multiple bands. Such an extension of the original method is 
appropriate when working with 8-band multispectral images; however, to successfully apply 
Lyzenga’s and Clark’s methods (hereafter referred to as Lyzenga method), sufficient ground 
truth points over homogenous seafloor are required. These are often difficult to obtain in remote 
island areas across the Pacific.  
 
Alternatively, Stumpf et al. (2003) introduced a method requiring only a few ground truth points 
that achieved good results over heterogeneous bottom types. They used attenuation rates from 
two spectral bands to develop a reflectance ratio model. The ratio between the blue and green 
band was used since, with increasing depth, reflected spectral radiance decreases faster in high-
absorption bands (green) compared with low-absorption bands (blue); therefore, variations in the 
band ratio correspond to changes in depth. 
 
Here, both methods (Lyzenga and Stumpf) were first tested in the study area north of Kapoho, 
where bathymetric LiDAR data are available for depth calculations and error analysis. After 
successfully deriving depths for North Kapoho, we focused on Ni‘ihau Island, where the lack of 
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high quality ground truth points is similar to what is anticipated for many remote and lightly or 
uninhabited islands throughout the region.    
 

Data 
 
Satellite Images – The WV-2 data used in this study were collected on January 2, 2010, with an 
average cloud cover of 5% for Ni‘ihau Island. The imagery for Kapoho was collected December 
11, 2010, with an average cloud cover of < 1%. The quality of each image varies and depends on 
the environmental conditions on the day of acquisition. Factors like cloud cover, shallow-water 
turbidity, high surf, whitewash, and sunlight reflectance on wave slopes severely impact derived 
results; therefore, these noisy areas are manually masked out and sea surface corrections are 
performed before deriving depth.    

Ground Truth Data – Bathymetric ground truth data are required for depth calculations and 
subsequent error analysis. Figure 4 shows the extent of LiDAR bathymetry coverage for the area 
north of Kapoho, Hawai‘i. 

 

 
 
Figure 4.--The extent of LiDAR coverage north of Kapoho on the Island of Hawai‘i. 
 
Insufficient multi-beam bathymetry coverage and the absence of bathymetric LiDAR data 
around Ni‘ihau require the use of other, and in some cases less reliable, data sources to derive 
depth. 
 
Four different types of ground truth data were compiled (Fig. 5). 

1. Multi-beam bathymetry – The most accurate and highest resolution depth data available 
are from a 5-m resolution multi-beam grid.3 Unfortunately, within the study area these 

                                                           
3 Available from http://www.soest.hawaii.edu/pibhmc. 

http://www.soest.hawaii.edu/pibhmc/pibhmc_mhi_nii_bathy.htm
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data are limited to 16–20 m depths, lacking much of the depth range of interest (0–20 m) 
and geographic extent necessary for them to be useful for depth calculations.  
 

2. Rapid Ecological Assessment (REA) – Depth and habitat data were collected by CRED 
scientists during dive surveys. Each depth data point is measured using a dive computer 
held at the seafloor and provides an accurate seafloor measurement with good horizontal 
positional accuracy; however, the limited number of data points and the recording of 
depth values as integers limits their usefulness for model building.  

 
3. Towed Diver – Depth and habitat data were collected by CRED scientists during towed-

diver surveys (Kenyon, 2004). Each depth point is measured and recorded by an SBE 39 
conductivity, temperature, depth (CTD) instrument (Sea-Bird Electronics Inc., Bellevue 
WA) with a pressure sensor. Depths are measured approximately 1 m above the seafloor. 
Although less accurate than multibeam or REA data (due to less horizontal positional 
accuracy and variable altitude of diver above seafloor), the towed-diver data are well 
distributed across the study area and are therefore useful for this analysis.  
 

4. Electronic Navigational Chart (ENC) – Nautical chart data are collected and developed 
by NOAA to insure safe navigation in U.S. waters.  Most of the ENCs are based on 
NOAA nautical paper charts with an average horizontal accuracy of ±10 m according to 
Differential Global Positioning System4; however, the underlying data sources for 
nautical charts have been collected over a long period of time by various sources 
resulting in a much higher error due to inconsistent depth information within a particular 
location. Therefore, the suitability of these datasets for depth derivation models is 
questionable.  

  

                                                           
4 http://www.nauticalcharts.noaa.gov/nsd 

http://www.nauticalcharts.noaa.gov/nsd/DGPSchart.html
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Figure 5.--Shown is the distribution and availability of four different ground truth data types 
around Ni’ihau Island: multibeam bathymetry, REA, towed-diver and ENC. The WV-2 image 
extension is shown in different grey symbols. 

 
 

Methods 
 

Image Preprocessing – Three image preprocessing steps were performed before deriving depths. 
 
 

Data Conversion 
 
The raw WV-2 multi-band satellite data are provided as digital numbers (DNs). These DN values 
were converted to top-of-atmosphere (TOA) radiance using the calibration factor and effective 
bandwidth for each band supplied by DigitalGlobe in the image metadata file (.imd) and the 
following equation: 

 
 (1) 
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where Ri is TOA radiance for band i, Ki is the absolute radiometric calibration, and Δλi is the 
effective bandwidth for band i. 
 
Masking 
 
It is important to eliminate all nonaquatic objects from the image before deriving depths. By 
creating an ocean mask, all terrestrial areas and detailed features like clouds, turbidity (caused by 
freshwater runoff), breaking surf, and boats were removed from the image. The mask was 
manually created in ArcGIS by drawing polygons around the areas of interest and extracting the 
spectral radiance values from the image.  
 
Sea Surface Corrections 
 
Passive remote sensing is most effective if images are acquired in conditions with minimal 
atmospheric disturbances and clear water; however, almost every image is contaminated by 
reflected light (sun glint) from the ocean surface. Sun glint appears as white stripes along the 
slope and crest of a wave, but radiance values can still be extracted from these areas (Deidda and 
Sanna, 2012). A method proposed by Hochberg et al. (2003) and modified by Hedley et al. 
(2005) allows for the correction of sun glint in visible bands from satellite images (Eq. 2). This 
technique is based on two assumptions: 1) measured radiance in the NIR portion of the EM 
spectrum represents sun glint, and 2) the magnitude of sun glint in the NIR is linearly related to 
the amount of sun glint in the visible bands. Therefore, the NIR value will indicate the amount of 
sun glint in the visible portion of the EM spectrum (Hedley, 2005). Extracting pixel values from 
a portion of an image over optically deep water and performing a linear regression on the NIR 
band radiance values (dependent variable) versus the visible band values (independent variable) 
allows us to extract the measured light reflectance value from each pixel in each band and deglint 
the entire image using the following equation (Hedley, 2005):  
 

R'i = Ri - bi(RNIR - minNIR) (2) 
 

where R'i is the glint and atmosphere corrected image for band i, Ri is the uncorrected image, bi is 
the slope resulting from the regression of band i, RNIR is the NIR radiance, and minNIR is the 
minimum NIR value. 
 
Depth Derivation Processes 
 
Lyzenga's multiple linear regression analysis—A multiple linear regression analysis was 
applied using spectral radiance values for coastal, blue, green, and yellow bands as the 
independent variables and depth as the dependent variable. A point shapefile was generated in 
ArcMap to obtain coincident deglinted spectral radiance and depth values using the ArcGIS 
sample tool, which creates a table for a set of input rasters (depth data and deglinted satellite 
image) at specific locations (point shapefile). The number of points per shapefile depends on the 
availability of ground truth data. A subset of these points was used for the linear regression and 
the remaining points for error analysis. The y-intercept and slope for each spectral band resulting 
from the multiple linear regression analysis were used to derive depth using the following 
equation, which is a multi-band version of the original Lyzenga method (Clark et al., 1987; 
Lyzenga et al., 2006):  



9 
 

                D = a + (b1)(R"1) + (b2)(R"2) + (b3)(R"3) +...+ (bn)(R"n)               (3) 
 
where D is depth, a is the y-intercept, b is the slope, R"i is ln (R'i - min(R'i)), and i = 1,2,3,...,n 
corresponds to the number of bands.  
 
Note that in the original Lyzenga method shown in Equation 3 the spectral radiance values are 
linearized by subtracting the minimum spectral radiance value of each band from all the band 
values and taking the natural log of the resulting spectral radiances.   
 
Stumpf’s ratio method--The ratio method is expressed by the following equation:  
 

                    

 

D = m1
ln(nR' '1 )
ln(nR' '2 )

m0
               (4) 

 
where D is depth, m1 is a tunable constant to scale the ratio to depth, n is a constant to keep the 
ratio positive, R"1 is the band 1 radiance of light reflected off the water surface, R"2 is the band 2 
radiance of light reflected off the water surface, and m0 is a correction for zero depth.  
 
Stumpf et al. (2003) used blue and green bands to extract spectral values for the ratio method. 
Here we used the coastal and yellow bands to take advantage of the deeper penetration of the 
coastal band, which is less absorbed by water than the other bands. The combination of the 
yellow and blue band resulted in a higher correlation with depth than for the blue and green 
bands (Alsubaie, 2012). To implement the ratio method we computed relative bathymetry from a 
subset of the deglinted image using the following equation: 
 

                                   

 

relativebathymetry =
ln(nR' '1 )
ln(nR' '2 )                            (5) 

 
where R"1 and R"2 are coastal and yellow bands, respectively, of the deglinted image, and n = 
1000. 
 
The relative bathymetry was then scaled to absolute bathymetry by generating a new point 
shapefile. For the depth model a few (~10) ground truth data points are needed, but it is still 
important to reserve a subset for the error analysis. Using the ArcGIS sample tool relative depth 
values were extracted using the designated model building data points.  
 
Next, mi and m0 were estimated by applying a linear regression analysis in which bathymetry was 
the dependent variable and relative bathymetry is the independent variable. Absolute depth was 
then calculated using the following equation: 
 

                                         

 

D = m1(relativebathymetry) − m0                                       (6) 
  

where D is depth, m1 is the slope, and m0 is the y-intercept. 
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RESULTS 
 
 
Initially we tested both the Lyzenga and Stumpf methods on a small area around Kapoho, 
Hawai‘i. We performed this test because extensive ground truth LiDAR data exist for the region. 
The Kapoho WV-2 image contains significant amounts of glint but it was still possible to derive 
depths after applying the sea surface corrections described above. 
 
 

Lyzenga’s Method 
 
 
Figure 6 shows depth derived from applying the Lyzenga method (Eq. 3) to the Kapoho satellite 
image vs. LiDAR depths. Many of the derived depth values are zero whereas the corresponding 
LiDAR depths are nonzero suggesting the method overcorrects the spectral radiance values 
resulting in a weak relationship between derived and LiDAR depths (R2 = 0.19). This problem is 
specific to the shorter wavelengths (i.e., blue and coastal bands) and may be caused by taking the 
natural log of the spectral radiance values prior to performing the multiple linear regressions.  
 

 
 
 
Figure 6.—Ground truth LiDAR bathymetry vs. estimated depths. Results of the Lyzenga 
method are shown as green diamonds. The purple squares are for reference and indicate how 
perfect recovery of the LiDAR depths would plot. 
 
For that reason, we adopted a modified approach by eliminating the linearization step and 
performing the multiple linear regressions on the deglinted spectral radiance values from 
Equation 2. This resulted in a much stronger correlation between the ground truth LiDAR data 
and the deglinted spectral radiance values (R = 0.78; Table 1, right) compared with the linearized 
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spectral radiance values and LiDAR data (R = 0.58; left). This suggests the relationship between 
these data is already linear and that taking the natural log of spectral radiance values  
(R'i - min(R'i)) is unnecessary. 
 
Table 1.--Comparison of two different multi-linear regression using LiDAR vs. logarithmic 
deglinted spectral radiance values (left) resulting in a weak relationship (R2 = 0.33) and LiDAR 
versus deglinted radiance values (right) resulting in a stronger relationship between the data  
(R2 = 0.60). 
 
 

 

 

 

 

 

 
 
Figure 7 shows a plot of the depths derived using nonlinearized spectral radiance values vs. the 
ground truth LiDAR depths. The relationship between bathymetric LiDAR and derived 
bathymetry is significant (R2 = 0.83; left). The absolute mean difference between estimated depth 
and LiDAR depth is 1.74 m. Furthermore, the 95% confidence interval limits of the derived 
depth values are 2.83 m and -5.16 m. The plot shows that accuracy decreases with increasing 
depth (right). If depth differences are limited to LiDAR depths of 0 to 15 m, the absolute mean 
difference between estimated depth and LiDAR depth is 0.98 m with 95% confidence interval 
limits of 2.59 and - 0.62. 
 
 

 
 
Figure 7.--LiDAR vs. estimated depth with R2 = 0.83 indicating a strong correlation between the 
data (left). Bland-Altman plot showing the differences between LiDAR and estimated depths vs. 
LiDAR depths,  and the 95% confidence interval limits of  + 2.83 m and - 5.16 m (right). 

 Linearized Spectral 
Radiance 

Deglinted Spectral 
Radiance 

Multiple R 0.58 0.78 
R Square  0.33 0.60 
Adjusted R Square 0.31 0.59 
Standard Error 3.09 2.39 
Observations 122 122 
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The map below (Fig. 8) shows gridded estimated bathymetry for north Kapoho, using 
nonlinearized spectral radiance values for the multiple linear regression analysis. Depth 
calculations reach ~ 39 m whereas the extent of the satellite image covers areas with depths  
> 600 m. The seafloor around the MHI is known to have steep slopes and significant depth drop-
offs within 1 km offshore. Further, Figure 9 highlights also that the accuracy of derived depth 
decreases with increasing depth. In this region seafloor depths < ~ 20 m are accurate within 
~ 5 m and errors increase with depths > ~ 20 m. These results suggest that derived depth values  
> 20 m should be disregarded in this region.  

 

 
 
Figure 8.--Map of gridded estimated bathymetry generated by performing a multiple linear 
regression analysis on the nonlinearized spectral radiance values. 
 

 
 
Figure 9.--Map showing the absolute difference between bathymetric LiDAR and estimated 
depth by performing a multiple linear regression analysis on the nonlinearized spectral radiance 
values. Green shows locations where the difference is < 5 m. Blue shows locations where the 
difference is > 5 m, which approximately corresponds to the 20-m depth contour shown in red. 
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Stumpf and Holderied’s Ratio Method 
 
 
Results for the ratio method are shown in Figure 10. A poor relationship between LiDAR and 
derived depth is reflected by the R2 value of 0.22 (Fig. 10, left). The mean absolute difference of 
the two data sets is 3.17 m. Furthermore, the95% confidence interval limits of the derived depth 
values are - 8.52 m and + 6.3 m (right) suggesting the method results in less accurate derived 
bathymetry compared to Lyzenga’s method.   
 

 
 

Figure 10.--LiDAR vs. estimated depth using coastal and yellow spectral radiance values in the 
ratio method. R2 = 0.22 shows a weak correlation between the two data sets (left). The absolute 
mean difference is 3.2 m and the 95% confidence interval ranges from 6.3 m and - 8.5 m (right). 
 

 
 
Figure 11 shows the results of the ratio method in map view. The maximum calculated depth is  
~ 31 m and only a few of the morphological features are detected in the very shallow areas. 
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A direct comparison of derived depths from the Lyzenga and Stumpf methods to bathymetric 
LiDAR is shown in Figure 12. The red boxes highlight linear morphological features that extend 
from the shoreline out to ~ 20 m that can be compared across the different data sets. The 
Lyzenga method matches bathymetric LiDAR and does the best job of recovering the detailed 
seafloor morphology. 
 

 
 

Figure 12.--Map showing a small section of LiDAR bathymetry for Kapoho, Hawai‘i in 10×10 
m resolution compared to estimated bathymetry for multiple linear regression method and ratio 
method in 2×2 m resolution. 
 

Ni‘ihau Application 
 
 
Based on our results for Kapoho we decided to apply the Lyzenga method to our study area 
around Ni‘ihau and to use a nonlinearized data set. Two WV-2 image mosaics were available for 
Ni‘ihau; one covered the southwest portion of the island and the other covered a small area 
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located in the northeast (Fig. 5). We performed two independent depth derivations to generate 
bathymetry for the entire Island.  
 
As mentioned earlier (Section: Data and Methods), the amount of available ground truth data for 
Ni‘ihau differs tremendously from the Kapoho, Hawai‘i area. Since LiDAR bathymetry is 
completely lacking there, we used a combination of ENC, REA, and multibeam bathymetry data 
to perform our analysis (Fig. 5). Initially, towed-diver data were excluded from the analysis 
because of its limitation in horizontal accuracy. The process entailed compiling ground truth data 
for the southwest portion of the island; extracting coastal, blue, green, and yellow spectral band 
values for selected depth points; performing the multiple linear regression analysis; and 
computing derived depths for southwest Ni‘ihau.  
 
Initial results showed a weak relationship between derived depth and ground truth data  
(R2 = 0.42). To test whether this was caused by incorporating different ground truth data types 
(each with their own inherent errors) in the analysis, the model was rerun using only towed-diver 
data. These data cover a larger depth range (5–20 m) and a sufficient number of data points exist 
to apply the model and to perform an independent error analysis. Prior to computing estimated 
depths, we first added 1 m to each towed-diver data point to account for the survey height above 
the seafloor. Figure 13 shows the results of the analysis, which are significantly better than the 
initial results with R2 = 0.71 (left), and the 95% confidence interval limits are + 3.1 m and - 3.5 
m. Furthermore, the mean absolute difference between derived depths and tow depths is 1.2 m 
with a maximum difference of 6.7 m between the data sets (right). 

 

 
 

Figure 13.--Tow vs. estimated depth with R2 = 0.71 indicating a strong correlation between the 
data (left). The difference between estimated depth and tow depth are shown (right). The 95% 
confidence interval is at 3.1 m and -3.5 m. The high density of tow depth data points at ~-15 m is 
a reflection of the target depth for towed-diver surveys. 
 
The process was repeated for the smaller northeast Ni‘ihau area again using only towed-diver 
data. Results are shown in Figure 14. The process was less successful than for southwest Ni‘ihau 
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resulting in an R2 value of 0.59 (left). The 95% confidence interval limits are +5.4 m and -5.3 m 
and the mean absolute difference is 2.1 m (right).  

 

 
 

Figure 14.--Tow vs. estimated depth with R2 = 0.59 indicating a good correlation between the 
data (left). Bland-Altman plot showing the differences between LiDAR and estimated depths vs. 
LiDAR depths, and the 95% confidence interval limits of + 5.4 m and - 5.3 m (right). 

 
For the final step we mosaicked both derived depth data grids into one grid for Ni‘ihau (Fig. 15). 
Existing data gaps are a result of whitewash along the shoreline, cloud coverage, breaking 
waves, WV-2 image data gaps, high turbidity, and heavily glinted areas.  
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Figure 15.--Map of the estimated bathymetry derived using the multiple linear regression method 
including deglinted spectral radiance values and towed-diver data. The model is able to recover 
detailed seafloor features like channels (B) and coral reefs (C). There is a small area on the 
northeast side of the island where highly reflective areas appear too shallow (A). Data gaps are 
related to cloud cover (1), whitewash (2), breaking waves around rocks (3), and WV-2 data gaps 
(4). 
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DISCUSSION AND CONCLUSION 
 
 
The main objective of this study was to investigate two of the most commonly used techniques 
(Lyzenga and Stumpf) for shallow-water depth derivation using WV-2 satellite imagery to help 
fill shallow-water bathymetry gaps. Furthermore, of the two methods we wanted to identify, the 
most feasible one in terms of quality and usability that can be applied to our broad study area 
across the remote Pacific Islands Region.  
 
Our results show that the Lyzenga multiple regression method was successful in deriving depths 
for both of our study areas (Kapoho, Hawai‘i, and Ni‘ihau) when using only the deglinted 
spectral radiance values instead of the linearized and deglinted spectral radiance values. Taking 
the natural log of spectral radiance values (Eq. 3) gave erroneous results. This problem occurs 
because the minimum radiance value for each spectral band over optically deep water is difficult 
to obtain (Doxani et al., 2012). Therefore, deglinted spectral radiance values are sometimes 
lower than the “minimum” deglinted spectral radiance values resulting in negative radiances 
when Equation 3 is applied, and undefined values when the natural log is taken.  
 
Doxani et al. (2012) discovered that the presence of sea grass affects the linear relationship 
between ground truth depth and spectral radiance values negatively, causing the multiple linear 
regression analysis to fail. The MHI lack large sea grass aggregations; this may explain the 
observed linear relationship between depth and spectral radiance values in our study areas and 
eliminate the need to linearize the data using the natural log portion of Lyzenga’s method. 
 
We successfully derived depth using LiDAR (Kapoho) and towed-diver (Ni‘ihau) data, although 
the accuracy of our derived product is highly dependent on the quality of the available ground 
truth data. There are some limitations to the accuracy of towed-diver data; namely, a degree of 
uncertainty about the horizontal positional accuracy of the data as well as some variability in the 
elevation of the diver above the seafloor. Despite these errors, the multiple linear regression 
analysis recovered detailed seafloor features like spur and groove (Fig. 12), channels, and reef-
like structures (Fig. 15). Unfortunately, we also experienced problems deriving depth in the 
shallow areas with high albedo over sandy bottom, where the seafloor appears to be too shallow 
(Fig. 15). This problem is common amongst many studies. Mishra et al. (2005) explains this kind 
of failure in depth estimations by heterogeneous bottom substrates with significant differences in 
albedos; dark bottom absorbs more light and will therefore appear deeper than its surrounding 
bright bottom with less absorption capacity. 
      
The accuracy of estimated depth decreases with increasing depth showing mean absolute 
differences between data sets of approximately 2 m in depths < 20 m and > 5 m in depths > 20 
m. This suggests we should use 20 m as a cutoff when integrating the derived depths with deeper 
data such as multibeam sonar. This is the case for the study sites presented here. We may be able 
to improve the accuracy of the derived product at greater depths for other study sites if the 
satellite imagery is of sufficient quality; however, Hochberg et al. (2007) suggests the same cut-
off depth for his study site on Oahu, Hawai‘i, using Lyzenga’s multiple linear regression 
analysis. The estimated depth results presented here capture the general topography of the 



19 
 

seafloor and are reasonably accurate, with results comparable to or better than those of other 
studies (e.g., Hogrefe et al., 2008; Su et al., 2008; Mishra et al., 2005). 
 
The application of the Stumpf et al. depth derivation model was not effective for Kapoho and 
therefore was not tested on Ni‘ihau. More study sites are needed to determine if a single method 
can be applied everywhere, or if methods must be modified on a site-by-site basis depending on 
the quality of the ground truth data and the satellite imagery available. 
 
Despite the aforementioned limitations in data accuracy, the use of satellite-derived depths is an 
effective method for mapping the shallow-water areas (0–20 m) where coral reef environments 
are found. Especially in remote areas where it is too untimely and costly to acquire multibeam 
and LiDAR bathymetry, satellite-derived depths can serve as valuable information for decision 
makers, including managers and stakeholders within the Pacific Islands Region.   
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APPENDIX 
 

 

List of U.S. Pacific Island Regions showing availability of shallow-water bathymetry derived 
from IKONOS, WV-2 multispectral satellite imagery, and LiDAR data. 
 
 

 
 
 

 
 
 
 
 

Shallow-water bathymetry in the U.S. 
Pacific Island Region derived from 
LiDAR, IKONOS, and WV-2 data. 
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The U.S. Pacific Island Region, showing the distribution and availability of shallow-water 
bathymetry derived from IKONOS, WV-2 multispectral satellite imagery, and LiDAR data. 
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